KEITHLEY

1

8

Integra Series Model 2700 Multimeter/ Data Acquisition System

000

(CARACTERINA DE CARACTERISTRO

ITHLE

OWER

£2

ACV (DC) (AC)

Store Rock Table Oxfor Tric Monte OPEN CLOSE STEP SCAN DIGITS RATE EXT

EXCE Track Seen DMM Channels It Excel X KEITHLEY Advances for any finances of the second secon	-	A	8 (:	0		A	8	C	D	E	1 1	6	+
Contiguration Non-Section 1000 Characteristics 3 Measured Data and Graph 1 Treads Scann DML Characteristics 10 All Characteristics 10 1 Treads Characteristics 10 All Characteristics 10 All Characteristics 10 10 Date Models Characteristics 10 1	2	EXC	LINX		1	Exce		IX.	, j	KEIT	HLEY	A Greater	Mean
Name Notice (and b) Notice (and b) <td>41</td> <td></td> <td>Taski Scan DMM Channels</td> <td></td> <td>Э</td> <td>Measure</td> <td>o Dat</td> <td>a and Grap</td> <td>h</td> <td></td> <td></td> <td></td> <td></td>	41		Taski Scan DMM Channels		Э	Measure	o Dat	a and Grap	h				
2) Construction 2) Co	58769101	Task	Narre OMB-Ucon Description Created Er Augus alema Dep Company (JETT) E (Vieta) e Date Created (USU) Date Modified (1090) Otte Modified (1090)	afficient UNENTS	1 557 89	4		RTD.Tem Chin 101 *C 28.79 29.23	Temp. Tc Chin 102 °C 34 99 36.06	Ohms 2w Can 103 Ohm 10 483 10 483	Ohms 2w Cire 184 Ohm 1.510 1.510	Voles Chin 105 V9C 6.009 5.009	
33 Middle Casin 11 30 (25) 27 (7) (0.43) (5) (7) (5) (7) (5) (7) (5) (7) (5) (7) (5) (7) (5) (7) (5) (7) (5) (7) (5) (7) (5) (7)	2	Configuration	Warksheel Date Contra	crook du	10			30 12	37 19	0.403	1.610	5.009	
Weeksheet Council No. Balance Stanning Color Stanning Color Dealer Stanning Color Stanning Color Stanning Color Stanning Color Stanning Color Stanning Color Stanning Color Stanning Color Stanning Color Stanning Color Stanning Color <	3455789	Trigger	Model Scan Source Immodian Delis Auto Reading Cruid Timer Monitar Hone Monitar Hone	44) 301	11713 14 15 16 17		-	30.65 31.73 52.34 32.96 11.00	37 17 37 09 38 13 39 04 36 10 Temp,	10 493 10 454 10 454 10 400 10 400 10 400	1 510 1 510 1 511 1 510 1 510	5.009 15.001 15.001 15.001 15.001	
Add (denore) Test (the processing) Test (the procesing) Test (the processing) <thtest (<="" td=""><td>Company of the owner own</td><td>Data Lecation</td><td>Worksheef Street Starting CoT A Diarting How 1 Organize Sy Hows Autouchement Organize society Log How Formal Organize tool pro</td><td>fathi</td><td>·····································</td><td></td><td>up/big c), DcV, Ohms - 2 - 2 U M E H & A A</td><td></td><td>~ ~</td><td>~</td><td>-</td><td></td><td></td></thtest>	Company of the owner own	Data Lecation	Worksheef Street Starting CoT A Diarting How 1 Organize Sy Hows Autouchement Organize society Log How Formal Organize tool pro	fathi	·····································		up/big c), DcV, Ohms - 2 - 2 U M E H & A A		~ ~	~	-		
Tesh Data 21 21 (1) 10 (1) </td <td></td> <td>Data Display</td> <td>Add Channel Tack Yes Add Channel S Add Units Scrift Diracky Na Units Tarrestary Intere Update Meany</td> <td>10. 100</td> <td>茶草設設設到</td> <td></td> <td>1</td> <td></td> <td></td> <td>D</td> <td>41</td> <td>R R</td> <td>1</td>		Data Display	Add Channel Tack Yes Add Channel S Add Units Scrift Diracky Na Units Tarrestary Intere Update Meany	10. 100	茶草設設設到		1			D	41	R R	1
Tesh Data 34 21.34 22.21 10.64 15.50 20.01 3.4 2.5 2.5 2.5 2.5 2.5 1.5 2.01 3.4 2.5 2.5 2.5 2.5 2.5 1.5 2.01 3.4 2.5 2.5 2.5 2.5 2.5 1.5 2.01 3.4 2.5 2.5 2.5 2.5 2.5 1.5 2.01 3.4 2.5 2.5 2.5 2.5 2.5 1.5 2.01 3.5 2.5 2.5 2.5 2.5 2.5 1.5 2.01 3.5 2.5 2.5 2.5 2.5 2.5 1.5 2.01 3.5 2.5 2.5 2.5 2.5 2.5 2.5 1.5 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	5				22			22,74		10,453	1310	100	
	-	1. P(1. 10 - P = 1.)	• 2000 Data	Now	ANNE.	¥[¥], there	-1 ./Jii	239 234 239 234 239 234 239 234	28.8.8	10.400 10.400 10.400	1.550 1.511 1.511 1.511	2.001 1.001 1001 1001	

MultiSy

A complete solution for PC-based multi-point measurement and control

Get a DMM, a switch mainframe, and a data acquisition/control system for the price of a PC plug-in board

The Model 2700 Multimeter/Data Acquisition System combines the functionality and high channel count of a switch

mainframe with the accuracy, convenience, and traceability of a true 6¹/₂-digit (22-bit) DMM. It packs all these capabilities into a compact half-rack unit at a price that's comparable to a high performance data acquisition board. Keithley's growing family of Integra Series plug-in modules gives the Model 2700 the industry's lowest per-channel installed cost in a high performance data acquisition and control package. Mix or match any two modules to get up to 80 differential channels of multiplexed measurement and control. That means significantly more channels in less space than competing solutions.

An astonishing range of functions and built-in signal conditioning

Each channel of the Model 2700 can be configured separately for any of 14 measurement functions and provides built-in signal conditioning. The Model 2700's high noise isolation up to 1000V allows it to measure virtually any electrical or physical parameter with high accuracy:

- DC volts
 - Temperature measurements with thermocouples, RTDs, or thermistors
 - AC volts

- 2-wire Ω
- 4-wire Ω
- Continuity

Frequency

DC current

- Period
 - AC current
- Event counter/totalizer
- Digital I/O

Perform system level control functions

Optional plug-in modules allow the Model 2700 to manage a variety of system control tasks:

- Actuate indicator lights and/or relays to provide alarm limit status, and directly interface with mechanical systems through open-collector digital I/O.
- Control power to the DUT, switch in or change loads, and perform general signal routing through isolated switching.
- Bias the DUT or perform analog control through dual $\pm 12V$ analog output ports.
- Route DC, AC, or RF signals from the DUT to other test equipment in the rack.

Wide testing flexibility

This economical, easy-to-configure solution is widely used in applications like temperature logging, precision measurement and control, and mixed signal data acquisition for product development, ATE, component testing, and process monitoring. The plug-in approach eliminates the triggering, timing, and processing issues that often complicate building systems from separate instruments and switches. The tight switching-and-measurement integration also helps reduce test time significantly. That means higher throughput and a better return on equipment investment.

Powerful software options

受責聲明

The Model 2700 is compatible with a variety of software options to match a variety of test programming needs. For example, the free TestPoint runtime offers basic datalogging capabilities. This startup utility can be modified with the powerful TestPoint application development package. Optional ExceLINX-1A software makes it easy to acquire data directly into an Excel spreadsheet. Free IVI (VISA-based) drivers simplify developing fully custom programs in Visual Basic, C/C++, LabVIEW, LabWindows/CVI, or TestPoint.

Keithley's patented measurement engine provides true 61/2- digit (22-bit) performance at higher reading rates.

Typical 61/2-digit meters only deliver 5¹/-digit (<18-bit) performance under similar conditions.

Engineers trust Keithley to provide best-in-class measurement performance. In many cases, our products provide up to 10X better performance at equivalent reading rates or up to 10X greater speed at equivalent measurement performance. Our patented A/D converter and high performance signal conditioning circuitry make this possible.

資料僅供參考,若有與原廠不合之處,請以原廠規格為準,且不供任何證明文件之用

TEL:03-5970828 FAX:03-5972622 新竹湖口工業區工業四路3號2F

High ease of use meets high measurement accuracy

Rugged 50-pin D-sub connectors ensure dependability and quick setup/teardown in production test racks.

Built-in relay cycle counters on each module for ease of maintenance.

 \square

Versatile plug-in options for any application

We're continuing to expand our line of Integra plug-in switch/control modules:

	7700	20-channel differential multiplexer with automatic CJC and screw terminals for general purpose or thermocouple measurements.
NEW!	7701	32-channel differential multiplexer with D-sub connectors, IDC ribbon cable compatible

- 7702 40-channel differential multiplexer with screw terminals
- **7703** 32-channel high speed differential multiplexer with reed relays and D-sub connectors
- **7705** 40-channel switch/control module, SPST independent switch with D-sub connectors (Form C configurable)
- 7706 All-in-one I/O module, 20-channel differential multiplexer, 2 analog outputs, 16 digital outputs and event counter/totalizer with screw terminals
- **EW!** 7707 32 open-collector digital I/O and 10-channel differential multiplexer with D-sub connectors, IDC ribbon cable compatible
- **NEW!** 7708 40-channel differential multiplexer with automatic CJC and screw terminals for general purpose or thermocouple measurements
- **NEW!** 7709 6×8 matrix switch module, with D-sub connectors, IDC ribbon cable compatible
- **NEW!** 7711 2GHz RF switch module with dual 1×4 configuration
- **NEW!** 7712 3.5GHz RF switch module with dual 1×4 configuration

Additional hardware accessories:

KPCI-488	IEEE-488/GPIB interface for PCI bus
7007-2	2-meter double shielded premium GPIB/IEEE-488 cable
7705-MTC-2	2-meter male to female 50-pin D-sub cable for 7703, 7705, 7707, and 7709
7707-MTC-2	2-meter male to female 25-pin D-sub cable for 7707 and 7709
7788	50-pin D-shell connector kit (2 each)
7789	50-pin/25-pin D-shell connector kit (1 each)
7790	50-pin male, 50-pin female and 25-pin male IDC D-shell kit (1 each)

Ideal for production testing

Use the Model 2700 for high throughput production testing of multiple points on a DUT and/or testing multiple DUTs in batch mode. D-sub and SMA rear panel connectors make it fast and easy to disconnect the Model 2700 from the test fixture. Free instrument drivers designed for use in a variety of popular Application Development Environments simplify creating custom systems for production test.

Versatile enough for environmental stress, burn-in, and QA testing

The Model 2700 is ideal for both short- and long-term monitoring and characterization tasks. It's immune to power failures, resuming scanning where it left off when power is restored—all set-up information is battery backed and data is stored in non-volatile RAM. Input channels can handle virtually any input while its digital output lines can trigger external alarms or perform other controls independent of a PC.

Perfect for research and product development

A DMM-like front panel, half-rack footprint, 80-channel capacity, outstanding measurement performance, and low cost make the Model 2700 ideal for R&D applications. The free TestPoint [™] runtime start-up software included with the Model 2700 and the economical ExceLINX-1A add-in utility provide basic datalogging capabilities, so it's easy to get new applications "Up & Running" quickly and inexpensively.

Visit www.keithley.com for more information on modules and accessories

Powerful, easy-to-use software options

Free Customizable Start-up Software. This free TestPoint runtime offers basic datalogging capabilities that can get a system up and running almost immediately. With just a few clicks of the mouse, this software can confirm that the system's hardware, wiring, communications, and software drivers are installed and operating correctly. It can also be used to configure instrument functions and perform simple data acquisition tasks. Data from multiple channels can be saved to disk and up to eight channels of data can be graphed automatically. If the application demands greater functionality, this runtime can be modified with the TestPoint package.

TestPoint Application Development Package. If the free startup software doesn't provide a feature the job demands, there's no problem—just use the economical TestPoint application development package to modify it. TestPoint's object oriented, dragand-drop technology offers the flexibility needed to build basic systems quickly, without in-depth programming. Expanding TestPoint applications is easy, too, with optional Internet, database, and statistical process control toolkits.

ExceLINX-1A. This powerful and economical add-in utility for Microsoft[®] Excel makes it simple to acquire data from the Model 2700 directly into Excel, then employ Excel's graphics, charting, and analysis capabilities to turn that data into useful information. No programming is required to use ExceLINX —a few mouse clicks are all it takes to configure channels, set parameters, triggers, and scan lists.

Free IVI (VISA-based) Instrument drivers. Experienced programmers who prefer to build fully custom systems from scratch can take advantage of our instrument driver, which is designed for use with Application Development Environments such as Visual Basic, C/C++, LabVIEW™, LabWindows™/CVI, and TestPoint. This IVI-style driver (VISA based) supports all of the instrument's functionality, and comes with numerous programming examples to help programmers get started quickly.

Three new system bundles make it easy to get applications off to a quick, economical start:

- The 2700/7700 value pack provides a basic 20-channel system.
- The **2700-DAQ-40** includes the Models 2700 and 7708 plus ExceLINX-1A for a 40-channel system.
- The **2700-DAQ-80** provides one Model 2700, two Model 7708 modules, and ExceLINX-1A for an 80-channel system.

Condensed specifications*

DC VOLTAGE

1000V protection all ranges; A/D Linearity of 1ppm rdg + 1ppm rng; 1200000 max counts				
	Reso-	Accuracy (90 day	Accuracy (1 year	Input
Range	lution	rdg + rng)	rdg + rng)	Resistance
100.0000mV	100nV	0.0025% + 0.0035%	0.0030% + 0.0035%	$10M\Omega \text{ or } > 10G\Omega$
1.000000V	$1.0\mu V$	0.0025% + 0.0007%	0.0030% + 0.0007%	$10M\Omega \text{ or } > 10G\Omega$
10.00000V	$10\mu V$	0.0020% + 0.0005%	0.0030% + 0.0007%	$10M\Omega \text{ or } > 10G\Omega$
100.0000V	$100\mu V$	0.0035% + 0.0006%	0.0045% + 0.0007%	$10M\Omega$
1000.000V	1.mV	0.0035% + 0.0006%	0.0050% + 0.0007%	$10M\Omega$

THERMOCOUPLE

Conversion to ITS-90; Automatic, External, or Simulated CJC; Open T/C check.

Туре	Range	Accuracy (1 year with simulated CJC)	Accuracy (1 year with automatic CJC)
J	-200 to +760°C	±0.2°C for all ranges	$\pm 1.0^{\circ}C$
Κ	-200 to +1372°C	±0.2°C for all ranges	$\pm 1.0^{\circ}C$
Ν	-200 to +1300°C	±0.2°C for all ranges	$\pm 1.0^{\circ}C$
Т	-200 to +400°C	±0.2°C for all ranges	$\pm 1.0^{\circ}C$
Е	-200 to +1000°C	± 0.2 °C for all ranges	$\pm 1.0^{\circ}C$
R	0 to +1768°C	±0.6°C for all ranges	$\pm 1.8^{\circ}C$
S	0 to +1768°C	±0.6°C for all ranges	$\pm 1.8^{\circ}C$
В	+350 to +1820°C	±0.6°C for all ranges	$\pm 1.8^{\circ}C$

RESISTANCE

2- or 4-wire; Offset Compensation selectable; 1000V / 350V protection on source / sense inputs

Reso-	Accuracy	Accuracy	Test
lution	(90 day rdg + rng)	(1 year rdg + rng)	Current
$100\mu\Omega$	0.0080% + 0.0006%	0.0100% + 0.0006%	1mA
$1.0 \text{m}\Omega$	0.0080% + 0.0006%	0.0100% + 0.0006%	1mA
$10m\Omega$	0.0080% + 0.0006%	0.0100% + 0.0006%	100µA
$100 \text{m}\Omega$	0.0080% + 0.0010%	0.0100% + 0.0010%	10µA
1.0Ω	0.0080% + 0.0010%	0.0100% + 0.0010%	$10\mu A$
10Ω	0.0200% + 0.0010%	0.0400% + 0.0010%	$0.7\mu A$
100Ω	0.2000% + 0.0030%	0.1500% + 0.0030%	$0.7\mu A$
	Reso- 100μΩ 1.0mΩ 100μΩ 100μΩ	Reso- lution Accuracy (90 day rdg + rng) 100μΩ 0.0080% + 0.0006% 1.0mΩ 0.0080% + 0.0006% 10mΩ 0.0080% + 0.0006% 100mΩ 0.0080% + 0.0010% 1.0mΩ 0.0080% + 0.0010% 1.0mΩ 0.0080% + 0.0010% 1.0Ω 0.0200% + 0.0010% 100Ω 0.0200% + 0.0010%	Reso- lution Accuracy (90 day rdg + rng) Accuracy (1 year rdg + rng) 100μΩ 0.0080% + 0.0006% 0.0100% + 0.0006% 1.0mΩ 0.0080% + 0.0006% 0.0100% + 0.0006% 10mΩ 0.0080% + 0.0006% 0.0100% + 0.0006% 10mΩ 0.0080% + 0.0010% 0.0100% + 0.0010% 100mΩ 0.0080% + 0.0010% 0.0100% + 0.0010% 1.0Ω 0.0080% + 0.0010% 0.0100% + 0.0010% 1.0Ω 0.0200% + 0.0010% 0.0100% + 0.0010% 100Ω 0.2000% + 0.0030% 0.1500% + 0.0030%

RTD

D100, F100, PT385, PT3916, or user type; plus probe error

Range		Re	solution	Accuracy (1 year)	
-200 to +60	-200 to +600°C		0.001°C	±0.06°C	
THERMISTO	R				
2.2k Ω , 5k Ω , and	$10k\Omega$; plu	s sensor	error		
Range		Re	solution	Accuracy (1 year)	
-200 to +60	0°C	0	0.001°C	±0.08°C	
DC CURREN'	Г				
250V, 3A fused in	puts; Built	-in shunt	t resistors		
	Reso-	A	ccuracy	Accuracy	Input
Range	lution	(90 da	y rdg + rng)	(1 year rdg + rng)	Resistance
20.00000mA	10nA	0.03%	6 + 0.004%	0.05% + 0.004%	<0.2V
100.0000mA	100nA	0.03%	6 + 0.040%	0.05% + 0.040%	< 0.05V
1 0000001		0.050		0.0(0/ 1.0.00/0/	<0.2V
1.000000A	$1\mu A$	0.05%	$5 \pm 0.004\%$	$0.00\% \pm 0.004\%$	<0.5V
1.000000A 3.000000A	1μΑ 10μΑ	0.05%	6 + 0.004% 6 + 0.004%	$0.06\% \pm 0.004\%$ $0.12\% \pm 0.004\%$	<0.3V <1.0V
1.000000A 3.000000A	1μΑ 10μΑ	0.05%	5 + 0.004% 5 + 0.004%	0.06% + 0.004% 0.12% + 0.004%	<1.0V
1.000000A 3.000000A AC VOLTAGE	1μΑ 10μΑ	0.05%	6 + 0.004% 6 + 0.004%	$0.06\% \pm 0.004\%$ $0.12\% \pm 0.004\%$	<0.5V <1.0V
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m:	1μA 10μA ax Crest Fa	0.05% 0.11%	6 + 0.004% 6 + 0.004%	0.00% + 0.004%	<0.5V <1.0V
AC VOLTAGE True RMS; 5:1 m: Range	1μΑ 10μΑ ax Crest Fa Resol	0.05% 0.11% actor ution	6 + 0.004% 6 + 0.004% Frequency R	0.00% + 0.004% 0.12% + 0.004% ange Accuracy (1 y	<0.5V <1.0V
AC VOLTAGE True RMS; 5:1 m Range 100mV to 750V	1μA 10μA ax Crest Fa Resol	0.05% 0.11% actor ution o 1mV	5 + 0.004% 6 + 0.004% Frequency Ra 3Hz - 10H	$0.06\% + 0.004\% \\ 0.12\% + 0.004\% \\ 0.12\% + 0.004\% \\ Iz = 0.35\% \\ 0.35\% \\ 0.35\% \\ 0.00$	<0.5V <1.0V rear rdg + rng) + 0.03%
3.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m Range 100mV to 750V	1μΑ 10μΑ ax Crest Fa Resol 0.1μV t	0.05% 0.11% actor ution o 1mV	5 + 0.004% 5 + 0.004% Frequency R 3Hz - 10H 10Hz - 20K	$\begin{array}{c} 0.06\% \pm 0.004\% \\ 0.12\% \pm 0.004\% \\ \hline \\ ange & Accuracy (1 y) \\ Iz & 0.35\% \\ Hz & 0.06\% \\ \hline \\ Hz & 0.06\% \\ \hline \\ Hz & 0.06\% \\ \hline \end{array}$	<0.3V <1.0V rear rdg + rng) + 0.03% + 0.03%
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V	1μΑ 10μΑ ax Crest Fa Resol 0.1μV t	0.05% 0.11% actor ution o 1mV	5 + 0.004% 5 + 0.004% Frequency R: 3Hz - 10F 10Hz - 20k 20kHz - 500	0.06% + 0.004% 0.12% + 0.004% ange Accuracy (1 y) Iz 0.35% Hz 0.06% KHz 0.12%	<0.3V <1.0V + 0.03% + 0.03% + 0.03% + 0.05%
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V	1μΑ 10μΑ ax Crest Fa Resol 0.1μV t	0.05% 0.11% actor ution o 1mV	5 + 0.004% 5 + 0.004% Frequency R 3Hz - 10H 10Hz - 20k 20kHz - 50l 50kHz - 100	0.06% + 0.004% 0.12% + 0.004% ange Accuracy (1 y) Iz 0.35% Hz 0.06% cHz 0.12% kHz 0.6%	< 1.0 V < 1.0 V + 0.03% + 0.03% + 0.05% + 0.08%
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V	1μΑ 10μΑ ax Crest Fa Resol 0.1μV t	0.05% 0.11% actor ution o 1mV	5 + 0.004% 5 + 0.004% Frequency R: 3Hz - 10F 10Hz - 20k 20kHz - 50F 50kHz - 100 100kHz - 300	0.06% + 0.004% 0.12% + 0.004% 12% + 0.004% Iz 0.35% Hz 0.06% cHz 0.12% kHz 0.6% kHz 0.6% kHz 4.0%	< 0.3 % $< 1.0 %$ $+ 0.03 %$ $+ 0.03 %$ $+ 0.05 %$ $+ 0.08 %$ $+ 0.5 %$
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V	1μΑ 10μΑ ax Crest Fa Resol 0.1μV t	0.05% 0.11% actor ution o 1mV	5 + 0.004% 5 + 0.004% Frequency R: 3Hz - 10F 10Hz - 20k 20kHz - 50 50kHz - 100 100kHz - 300	0.06% + 0.004% 0.12% + 0.004% 12% + 0.004% Iz 0.35% Hz 0.06% kHz 0.12% kHz 0.6% 0kHz 4.0%	< 0.3 % $< 1.0 %$ $+ 0.03 %$ $+ 0.03 %$ $+ 0.05 %$ $+ 0.08 %$ $+ 0.5 %$
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V FREQUENCY Selectable Gate 2	1μA 10μA ax Crest Fa Resol 0.1μV t	0.05% 0.11% cctor ution o 1mV RIOD	5 + 0.004% 5 + 0.004% Frequency R: 3Hz - 10F 10Hz - 20k 20kHz - 50F 50kHz - 100 100kHz - 300 20msec, 1sec	0.06% + 0.004% 0.12% + 0.004% 12% + 0.004% Iz 0.35% Hz 0.06% kHz 0.12% kHz 0.6% 0kHz 4.0%	< 0.3 % $< 1.0 %$ $+ 0.03 %$ $+ 0.03 %$ $+ 0.05 %$ $+ 0.08 %$ $+ 0.5 %$
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V FREQUENCY Selectable Gate 7	1μA 10μA ax Crest Fa Resol 0.1μV t f and PEl fimes of 10 Freque	0.05% 0.11% ctor ution 0 1mV RIOD msec, 10 ency	5 + 0.004% 5 + 0.004% Frequency R: 3Hz - 10F 10Hz - 20k 20kHz - 50f 50kHz - 100 100kHz - 300 200msec, 1sec Period	0.06% + 0.004% 0.12% + 0.004% 12 0.35% Hz 0.06% KHz 0.12% kHz 0.6% 0.12% Acc	<0.3V <1.0V +0.03% +0.03% +0.05% +0.08% +0.5% uracy
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V FREQUENCY Selectable Gate 7 Range	1μA 10μA ax Crest Fa Resol 0.1μV t f and PEl Fimes of 10 Frequ Rar	0.05% 0.11% actor ution o 1mV RIOD Dimsec, 10 iency age	5 + 0.004% 5 + 0.004% Frequency R: 3Hz - 10F 10Hz - 20k 20kHz - 50k 50kHz - 100 100kHz - 300 00msec, 1sec Period Range	0.06% + 0.004% 0.12% + 0.004% 12% + 0.004% 12 12 0.35% 12 0.35% 14z 0.35% 14z 0.06% 14z 0.12% 14z 0.6% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06% 14z 0.06	< 0.3 v < 1.0 v < 1.
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V FREQUENCY Selectable Gate 7 Range 100mV to 750V	1μA 10μA ax Crest Fa Resol 0.1μV t fand PEI fimes of 10 Frequ Rar 3Hz to 4	0.05% 0.11% actor ution o 1mV RIOD msec, 10 tency gge 500kHz	5 + 0.004% 5 + 0.004% Frequency R 3Hz - 10F 10Hz - 20k 20kHz - 50F 50kHz - 100 100kHz - 300 100kHz - 300 200msec, 1sec Period Range 333msec to 1	0.06% + 0.004% 0.12% + 0.004% иz 0.06% Hz 0.06% cHz 0.12% kHz 0.6% kHz 0.6% kHz 4.0%	<pre><1.0V </pre> <pre><1.0V </pre> <pre></pre> <pre><</pre>
1.000000A 3.000000A AC VOLTAGE True RMS; 5:1 m: Range 100mV to 750V FREQUENCY Selectable Gate 7 Range 100mV to 750V	1μA 10μA ax Crest Fa Resol 0.1μV t f and PEI fimes of 10 Frequ Rar 3Hz to 5	0.05% 0.11% actor ution o 1mV RIOD msec, 10 tency uge 500kHz	5 + 0.004% 5 + 0.004% Frequency R: 3Hz - 10F 10Hz - 20k 20kHz - 50F 50kHz - 100 100kHz - 300 200msec, 1sec Period Range 333msec to 5	0.06% + 0.004% 0.12% + 0.004% 0.12% + 0.004% Iz 0.35% Hz 0.06% cHz 0.12% kHz 0.6% - 0.12% kHz 4.0% Acc (1 year r 2µsec 0.01% + 0.33 0.01% + 0.33	<pre><(0.3) </pre> <pre><(1.0V) </pre> <pre></pre> <pr< td=""></pr<>

AC CURRENT

True RMS; 5:1 Crest Factor

Kange	Resolution	Frequency Range	Accuracy (1 year rdg + rng)
1A	$1\mu A$	10Hz – 5kHz	0.35% + 0.06%
3A	$10\mu A$	10Hz – 5kHz	0.15% + 0.06%

DC READING RATES

Function	Digits	Readings/sec	NPLC
DCV, DCI,	6.5	5	10
2W Ohms	6.5	50	1
	5.5	250	0.1
	4.5	2000	0.01
4W Ohms, RTD	6.5	2.5	10
Thermistor,	6.5	25	1
Thermocouple	5.5	125	0.1
	4.5	250	0.01

DC READING SPEED VS. NOISE REJECTION

NPLC	Digits	Filter	NMRR	CMRR	RMS Noise (10V range)	
10	6.5	50	110dB	140dB	<1.2µV	
1	6.5	Off	90dB	140dB	$< 4.0 \mu V$	
0.1	5.5	Off	-	80dB	<22µV	
0.01	4.5	Off	-	80dB	<150µV	

SCANNING RATE, INTO AND OUT OF MEMORY TO GPIB

	Channels/s
7703 scanning DCV	185/s
7703 scanning DCV with limits or timestamp on	150/s
7703 scanning DCV alternating 2W	60/s
7702 scanning DCV	60/s
7700, 7706, and 7708 scanning temperature (T/C)	50/s

SYSTEM FEATURES

Scanning Channels	Up to 80 differential
Trigger Source	External digital input, front panel keypad, channel monitor, interval timer, GPIB/RS-232, Trigger Link, immediate
Scan Count	1 to 55,000 or continuous
Scan Interval	0 to 99 hours; 1msec step size
Channel Delay	0 to 9999999sec per channel; 1msec step size
Configuration	Per channel for measurement setups, math, and limits
Power Fail Recovery	Resume scanning sequence; configuration and stored data are preserved
Power up Memory	4 user configurations with labels
Real Time Clock	Included; use to timestamp readings
Data Storage	Non-volatile 55,000 reading buffer with timestamp; continuous fill; query while filling; min/max/avg/std dev
Alarm Limits	2 HI and 2 LO limits per channel; selectable polarity
Digital Inputs	2 TTL level – external trigger plus interlock
Digital Outputs	4 TTL level - selectable polarity; HI/LO limit configurable
Master Alarm	1 TTL level output toggles when any HI/LO limit is exceeded
Front Panel Lock	Software enabled
Communication	IEEE-488.2, RS-232
Per-channel Math	mΞ+b, %
Multi-channel Math	Ratio, Average
Resolution	6½-digit with 20% overrange; 28-bit readings available over IEEE-488
Software	TestPoint-based start-up applications; LabVIEW, TestPoint, LabWindows/CVI, Visual Basic, C/C++ driver

GENERAL INFORMATION

JEINERAL INFORMATION	
ower Supply	$100V / 120V / 220V / 240V / \pm 10\%$
ine Frequency	45Hz to 66Hz; 360Hz to 400Hz
Derating Environment	0°C to 50°C
ize	89mm H x 213mm W x 370mm D
Varranty	3 years on mainframe, 1 year on Measurement & Control Modules
afety	UL-3111-1, IEC 1919-1, CSA
MC	CE mark, FCC Class A

 \square

