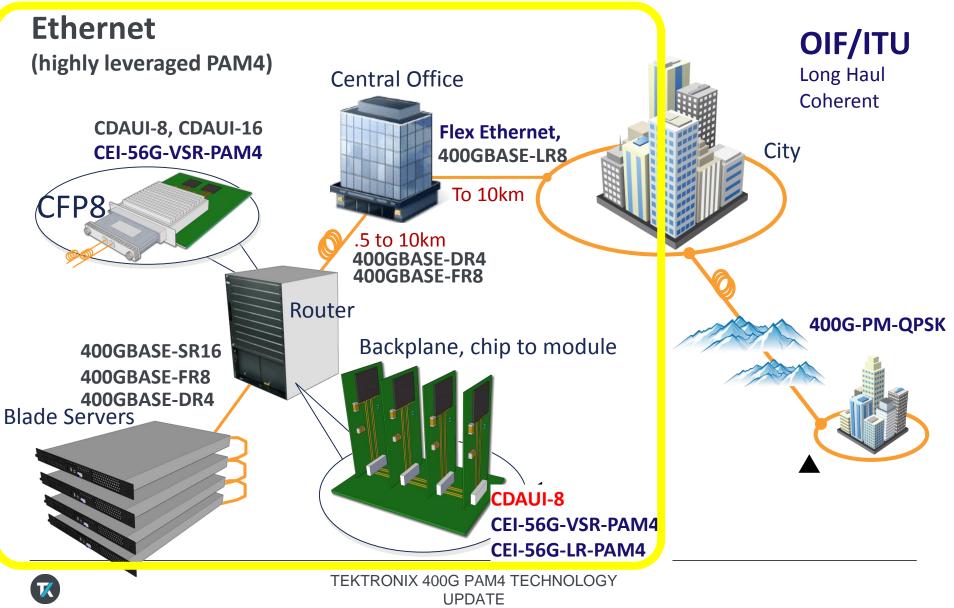

2016太克科技 春季創新論壇


DataCom: Practical PAM4 Test Methods for Electrical CDAUI8/VSR-PAM4, Optical 400G-BASE LR8/FR8/DR4

400G Ecosystem (shown for comparison)

DataCom 400G

The Top-to-Bottom 100G Standards

(Main actors only, not a comprehensive table)

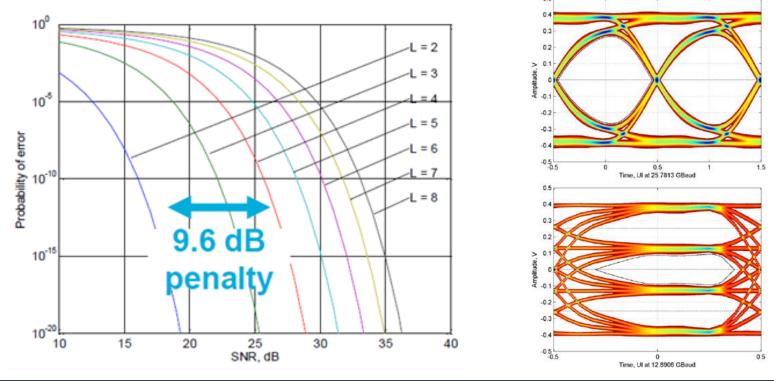
Distance	Standard	Modulation/signaling	e.g.	
X,000 km40 km	OIF, OTN, ITU	Complex optical	DP-QPSK	
10, 40 km	Ethernet	NRZ SM	100GBASE-ER4/LR4	100G
2 km	MSA "CLR4"	NRZ SM	100G-CLR4	
500 m	MSA "PSM4"	NRZ SM	100G PSM4	acros
100 m	Ethernet	NRZ MM	100GBASE-SR4	across the
~100 m	Infiniband (IB)	NRZ over active cable; or interconnect	"CAUI-4" going	e stack
10 m	Ethernet, IB	NRZ on passive Cu cable	100GBASE-CR4	¥
Backplane < 1m	Ethernet, OIF CEI	NRZ	100GBASE-KR4, CEI LR	
		PAM4	100GBASE-KP4	
Interconnect module to chip, chip to chip	OIF CEI, Ethernet	NRZ	VSR CAUI-4	

The Top-to-Bottom 400G Standards

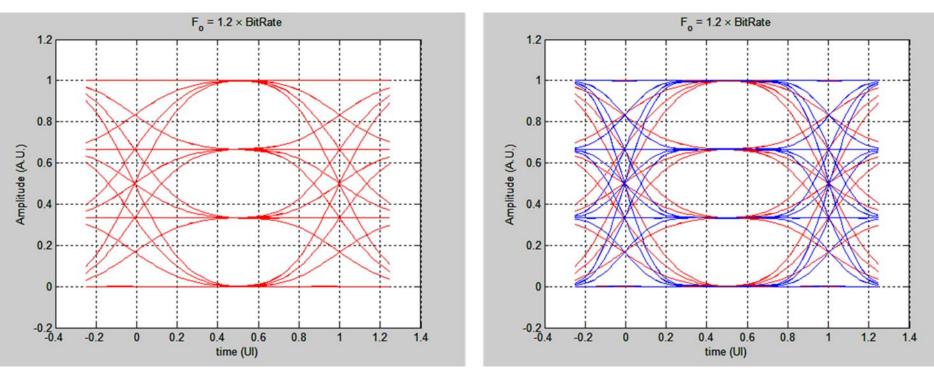
(Main actors only, not a comprehensive table)

Distance	Standard	Modulation/signaling	e.g.	
X,000 km	OIF, OTN, ITU	Complex optical	DP-QPSK	Ы
100M (MMF)	Ethernet	PAM2 at 25 GBd		400
10 km	Ethernet	PAM4 at 25 GBd	400GBASE-LR8	G
2 km	Ethernet	PAM4 at 25 GBd	400GBASE-FR8	acros
500 m	Ethernet	PAM4 at 56 GBd	400GBASE-DR4	S
Backplane < 1m	OIF CEI	PAM4 at 25 GBd		the st
Interconnect module to chip, chip to chip	Ethernet OIF CEI	NRZ PAM4	CDAUI-16, CAUI-4 CDAUI-8 CEI VSR PAM4	stack

Why PAM4 now?


Recall the Fibre-Channel 2GFc conversation from 2001 "We're moving to 2Gbps... we need to move to PAM4!"

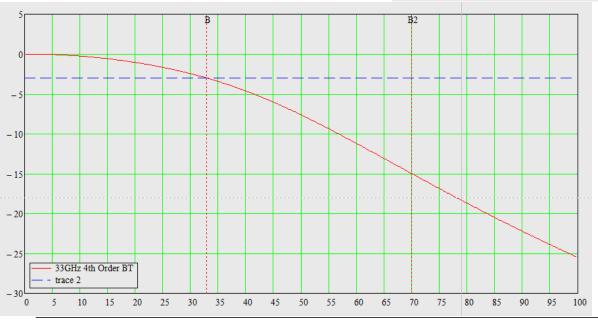
- 1M Backplane (note KP4) is ~-40dB (Megtron/Comercially viable) of loss (at 13GHz) which is just barely supportable at 100G speeds and current receiver technologies. Doubling of NRZ date rate, pushes backplanes into -70dB loss profiles, and is simply untenable by any known receiver transmitter technology today. Higher order levels of modulation are the most effective way forward, by keeping the signaling fundamental in the range from 12-14GHz.
- RX equalization technology has been responsible for making things work up to 25G. Increases in RX dynamic range and sensitivity allow effective multi-threshold sampling of high order modulated signals.
- Optical channels are amenable to 56GBaud, due to the relatively low loss and dispersion. They are going along with PAM4 to maintain the same format and to prevent conversion. The higher order modulation format is not required by the optical domain however.
- Commercially viable electrical backplanes and host to module interconnects operating up to 56GBaud are the primary drivers for PAM4.

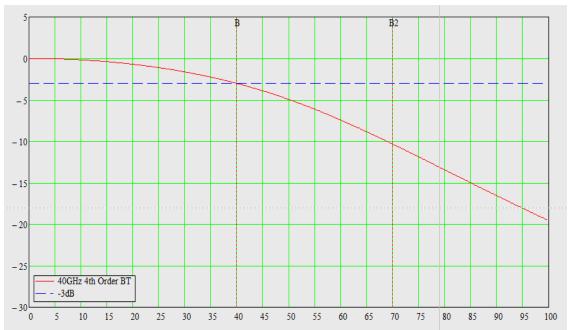


PAM4 versus NRZ (PAM2) from an SNR viewpoint

- Channels are "out of Bandwidth" at 56GBaud.
 - Higher order modulation (PAMn) is one means of combating incredibly high channel losses.
 - Multiple bits/symbols results in a reduced overall symbol rate and fundamental transmission frequency 14GHz rather than 28GHz but comes with a SNR penalty.

PAM4 (400G) Signal Acquisition Requirements



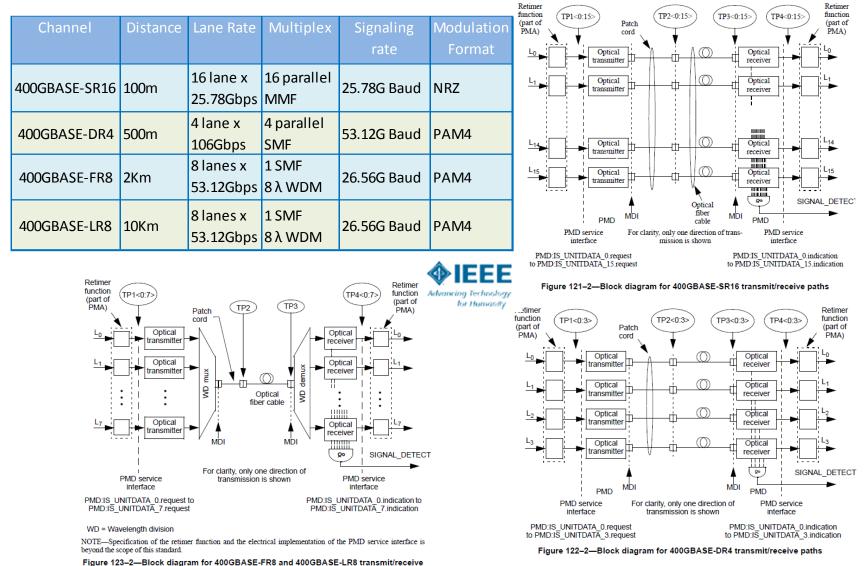

For NRZ (PAM2), the Bessel-Thompson response is traditionally chosen as it has "linear phase" and minimizes instrument induced DDJ. This is not true for a PAM4 signal, where DDJ will be added even for a zero phase filter. This means that a higher BW needs to be used to lower the instrument induced DDJ. The exact amount of extra bandwidth that is needed is still an active area of discussions within the standards group(s). Current discussion seem to be converging in on 120% of the NRZ bandwidth which is typically 1.5x the data rate.

Electrical Bandwidth for PAM4

- Ultimately signal rise time dictates required instrument bandwidth.
- NRZ (PAM2) Electrical BW is commonly called out 1.5x the data rate.
- PAM4 is likely settling on 120% over it's PAM2 needs.

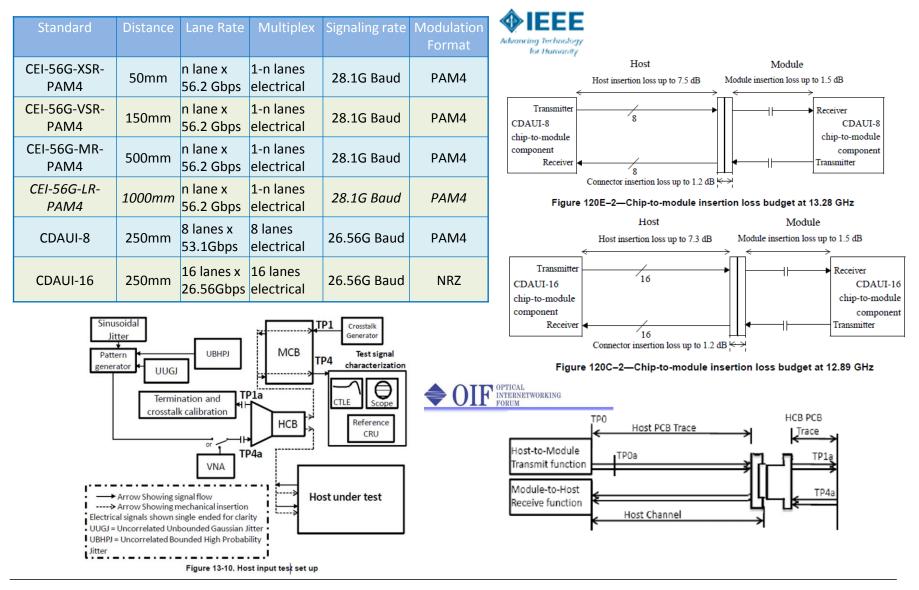
•

•


•

•

- This ends up being ~1.8x the data rate.
- OIF-CEI (28Gbps NRZ) calls out 40GHz electrical BW (BT response).
- The 28GBaud PAM4 (2X the signal rate) translates to ~48GHz acquisition BW.
- Remember this is a rule of thumb. Some specs are very precise here.

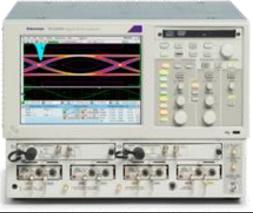


State of 400G Optical Communications

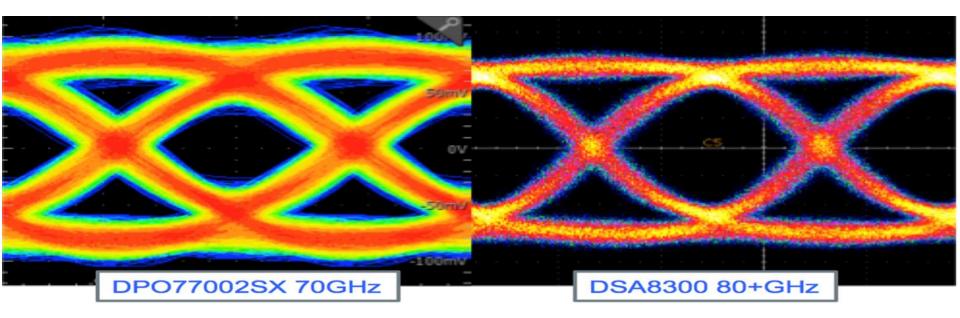
paths

State of 400G Electrical Communications

TEKTRONIX 400G PAM4 TECHNOLOGY UPDATE


Tektronix 100G/400G Signal Acquisition Systems

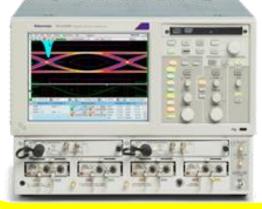
Equivalent Time Signal Acquisition • Real Time Signal Acquisition Software Control and Analysis


- Two world class acquisition systems cover the breadth of any 400G Verification and design needs, with the lowest noise, highest bandwidth in the industry
 - Real Time (70GHz ATI) single shot acquisition and triggering capabilities are key tools for advanced analysis and debug.
 - Equivalent Time low noise, high sensitivity tools enable the best margin in product and device characterization.
- Real Time
 - 70GHz Analog Bandwidth, 4.3ps rise time (20%-80%)
 - 200GS/s Sample Rate
 - <125fs jitter noise floor
 - − ≥25GHz Edge trigger bandwidth
 - Compact 5 ¼" Oscilloscope package
 - No physical clock recovery required (key to 400G)
 - Comprehensive CTLE, DFE, FFE signal processing
 - Lowest noise real time acquisition system
 - Best Electrical solution on the planet

- Equivalent Time
 - 85GHz Optical Bandwidth
 - 70GHz Electrical Bandwidth
 - <100fs jitter noise floor
 - 20nW to .6uW Optical Resolution.
 - Automated test of 80 Industrial Stds.
 - Best Optical solution on the planet

Real Time –vs- Equivalent Time

Tektronix 100G/400G Signal Acquisition Systems


Equivalent Time Signal Acquisition • Real Time Signal Acquisition Software Control and Analysis

- Two world class acquisition systems cover the breadth of any 400G Verification and design needs, with the lowest noise, highest bandwidth in the industry
 - Real Time (70GHz ATI) single shot acquisition and triggering capabilities are key tools for advanced analysis and debug.
 - Equivalent Time low noise, high sensitivity tools enable the best margin in product and device characterization.
- Real Time
 - 70GHz Analog Bandwidth, 4.3ps rise time (20%-80%)
 - 200GS/s Sample Rate
 - <125fs jitter noise floor</p>
 - − ≥25GHz Edge trigger bandwidth
 - Compact 5 ¼" Oscilloscope package
 - No physical clock recovery required (key to 400G)
 - Comprehensive CTLE, DFE, FFE signal processing
 - Lowest noise real time acquisition system
 - Best Electrical solution on the planet

Equivalent Time

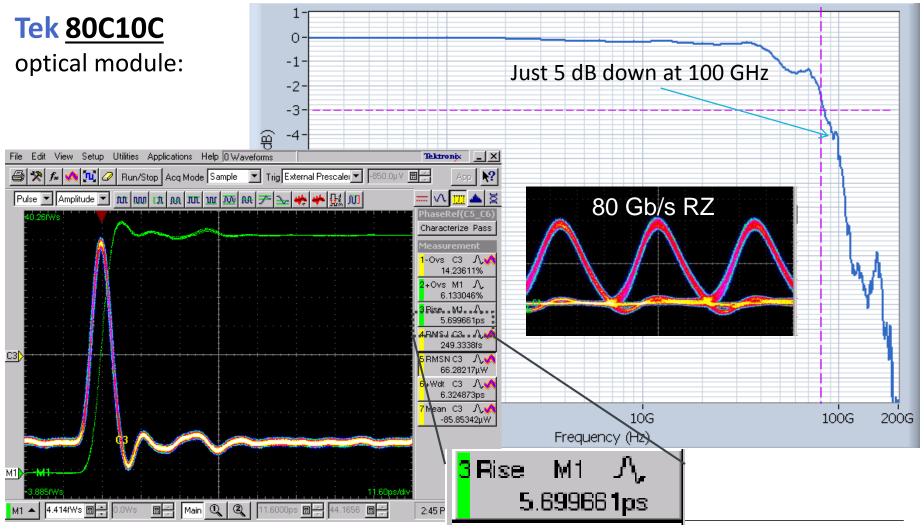
- 85GHz Optical Bandwidth
- 70GHz Electrical Bandwidth
- <100fs jitter noise floor
- 20nW to .6uW Optical Resolution.
- Automated test of 80 Industrial Stds.
- Best Optical solution on the planet

80C15 – Multi-Mode/Single-Mode up to 32GBd 80C10C – Single-Mode, 25-32 and 53-56GBd in one

Multi-Mode, Single-Mode: 80C10C vs 80C15

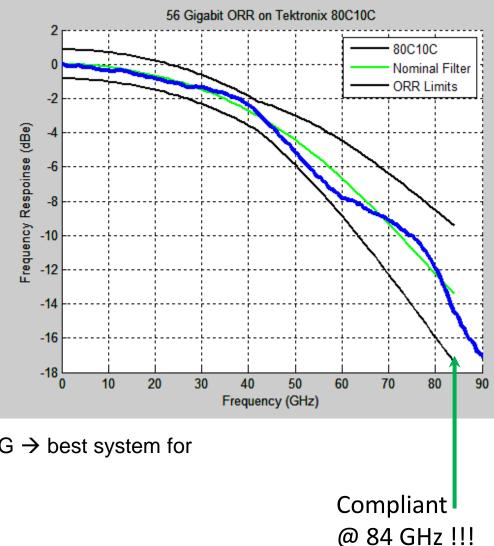
Several key considerations are important in optical analysis.

- Multi-Mode and Single-Mode support are needed to span SR16,LR8, FR8 optical links.
- Noise is THE key spec in optics. The high sensitivity low noise 80C15 is uniquely designed for 28G Baud PAM4 specs (LR8,FR8)
- DR4 specifications require optical BW out to 84 GHz, which is what the 80C10C is designed for.


Feature / Specification	80C15	80C10C
Input Fiber Type	SMF + MMF 9, 50, 62.5 μm	SMF 9 μm
Wavelength Range	780nm-1650nm	1290-1620nm
Unfiltered Optical Bandwidth	32+ GHz	80+ GHz
Unfiltered Risetime, typ	14 ps	7 ps opt. F1 6 ps opt. F3
Filter Rates [Gb/s] (not full filter)	TDEC, 2632	26 44.5 Gb/s (26G: F1 or F2)
Typ Noise [uW] at 1310 @26Gb/s	10 / 14	16 / NA
26 Gb/s Mask Sensitivity AOP @ 1310nm	-9 dBm	-6 dBm
Usable Electrical Out *accessory	32 Gb/s	> 44 Gb/s

Single-mode optical standards

(400Gb/s DR4 specification under development in 802.3bs)


• Current technology satisfies 56 Gb/s as well as current 25 Gb/s

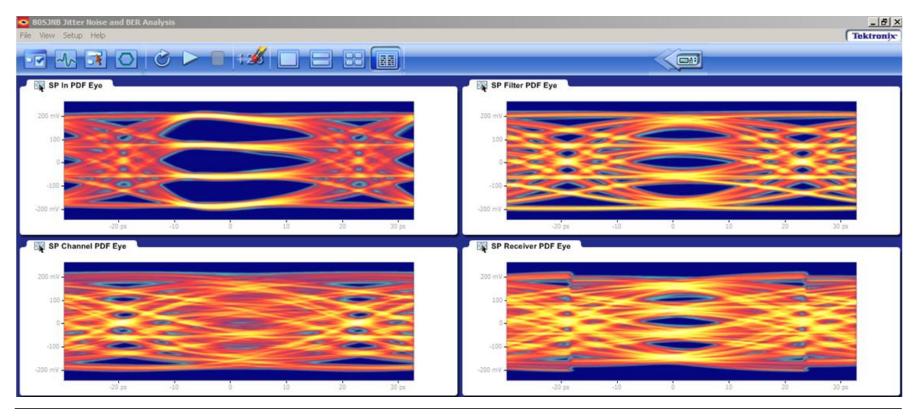


56Gbps Optical Reference Receiver on Highest Optical Bandwidth Oscilloscope

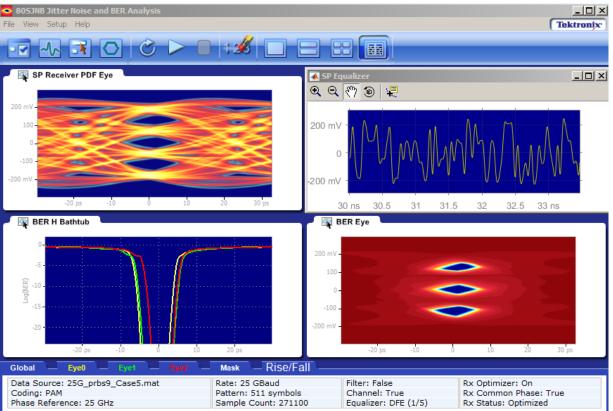
80C10C, 80C10C-CRTP

- High sensitivity with and without CR
- Support for Optical Bessel-Thompson Filter in HW (no DSP, no special pattern needed)
- Electrical Data Out (optional) for:
 - Clock Recovery
 - Real-time oscilloscope for troubleshooting
 - BER Analysis
- Best noise performance at 40G, 56G → best system for PAM4 @ 56 GBd
- ~100 GHz optical Bandwidth

Receiver Jitter and Noise decomposition detail


- Accurate jitter and noise decomposition is key to root cause analysis of Signal Integrity problems.
- Random Jitter/Noise: Caused by thermal and shot noise effects on semiconductor junctions and/or laser relative intensity noise.
- Deterministic Jitter/Noise: Contributed to by a wide set of factors ranging from non uniform channel performance or periodic signal content or cycle asymmetry.
- Total Jitter at BER (typically 1E-12, but increasingly 1E-6 with FEC) depicts the aggregate effects of all the jitter terms on eye width to user defined low probabilities. Similarly Total Noise depicts the net effects of the noise components at the same Bit Error Ratio.

Data Source: BSA286CLand2modulators.mat		Rate: 25.78125 GBaud		Filter: True	Rx Optimizer: On	
Coding: PAM		Pattern: 511 symbols		Channel: True	Rx Common Phase	
Phase Reference: None		Sample Count: 271.10 k	k	Equalizer: FFE (10)	Rx Status: Optimize	
		Sompre Counci ar and a			The order of the	20
Jitter (Decision Threshold: 1.1 mW)			Noise (Sampling Pha	ase: 0.5 % UI)		
Random Jitter			Random Noise			
RJ (RMS)	=	665 fs	RN (RMS)		=	13 uW
RJ(h) (RMS)	=	572 fs	RN(v) (RMS)		=	13 uW
RJ(v) (RMS)	-	340 fs	RN(h) (RMS)		-	45 pW
Deterministic Jitter			Deterministic Nois	<i>s</i> e		
DJ	=	26 ps	DN		=	274 uW
DDJ	-	24 ps	DDN		-	272 uW
DCD	=	395 fs	DDN(upper)		=	228 uW
DDPWS	=	18 ps	DDN(lower)		=	304 uW
BUJ(d-d)	-	50 fs	BUN(d-d)		-	2.0 uW
PJ	=	428 fs	PN		=	2.0 uW
PJ(h)	=	425 fs	PN(v)		=	2.0 uW
PJ(v)	-	51 fs	PN(h)		-	33 pW
NPJ(d-d)	=	50 fs	NPN(d-d)		=	2.0 uW
Total Jitter @ BER			Total Noise @ BER			
TJ (1E-12)	-	32 ps	TN (1E-12)		-	439 uW
Eye Opening (1E-12)	=	6.7 ps	Eye Opening (1E-12	(2)	=	122 uW
			Eye Amplitude		=	561 uW
Additional Jitter Measurements			SSC Modulation			
J2 (2.5E-3)	=	27 ps	Magnitude		=	0 ppm
J9 (2.5E-10)	=	31 ps	Frequency		=	0 Hz


DFE with Signal Path Emulation

- Start with a near end Tx Signal.
- Right: Bandwidth compromised
- Lower Left: Interconnect emulation (via S-Parameters)
- Lower Right: Receiver compensation with a DFE (Non Linear Decision Feedback Equalizer).

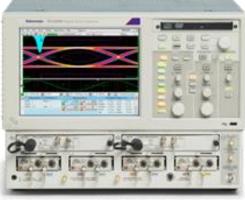
PAM4 Transition Trellis table

In the field of advanced • encoding and error correction it's valuable to verify that transition symmetry has been maintained, as well as to be able to examine individual rise and fall transition intervals specs. This is now available in ET based systems as well as RT PAM4.

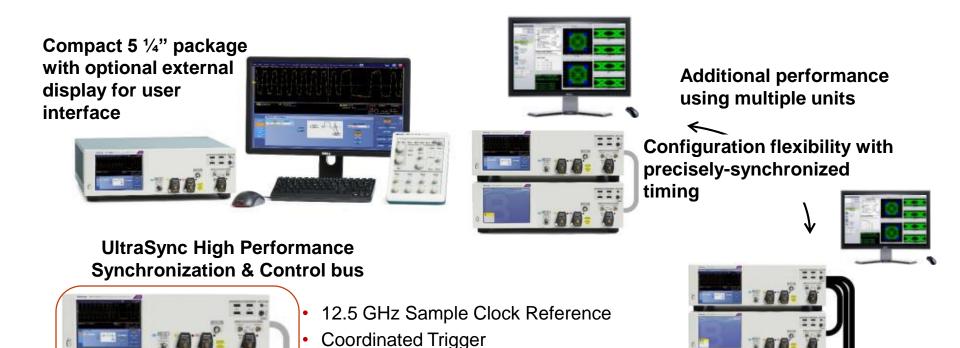
Transition	Mean(µ)	StdDev(σ)	CV(σ/μ)	Min	Max	Count
0→1	17 ps	3.3 ps	0.19	12 ps	25 ps	32
0→2	19 ps	1.8 ps	0.098	15 ps	22 ps	32
<mark>0→</mark> 3	19 ps	1.3 ps	0.067	17 ps	22 ps	32
1→0	20 ps	2.5 ps	0.12	16 ps	29 ps	32
1→2	19 ps	3.7 ps	0.19	12 ps	29 ps	32
1→3	20 ps	1.5 ps	0.074	17 ps	23 ps	32
2→0	20 ps	1.6 ps	0.081	16 ps	23 ps	32
2→1	18 ps	2.4 ps	0.13	14 ps	24 ps	32
2→3	20 ps	2.7 ps	0.14	14 ps	27 ps	32
3→0	19 ps	962 fs	0.050	17 ps	21 ps	32
3→1	19 ps	1.7 ps	0.090	16 ps	22 ps	32
3→2	18 ps	4.0 ps	0.23	11 ps	26 ps	32

TEKTRONIX 400G PAM4 TECHNOLOGY UPDATE

Tektronix 100G/400G Signal Acquisition Systems


Equivalent Time Signal Acquisition • Real Time Signal Acquisition Software Control and Analysis

- Two world class acquisition systems cover the breadth of any 400G Verification and design needs, with the lowest noise, highest bandwidth in the industry
 - Real Time (70GHz ATI) single shot acquisition and triggering capabilities are key tools for advanced analysis and debug.
 - Equivalent Time low noise, high sensitivity tools enable the best margin in product and device characterization.
- Real Time
 - 70GHz Analog Bandwidth, 4.3ps rise time (20%-80%)
 - 200GS/s Sample Rate
 - <125fs jitter noise floor
 - − ≥25GHz Edge trigger bandwidth
 - Compact 5 ¼" Oscilloscope package
 - No physical clock recovery required (key to 400G)
 - Comprehensive CTLE, DFE, FFE signal processing
 - Lowest noise real time acquisition system
 - Best Electrical solution on the planet

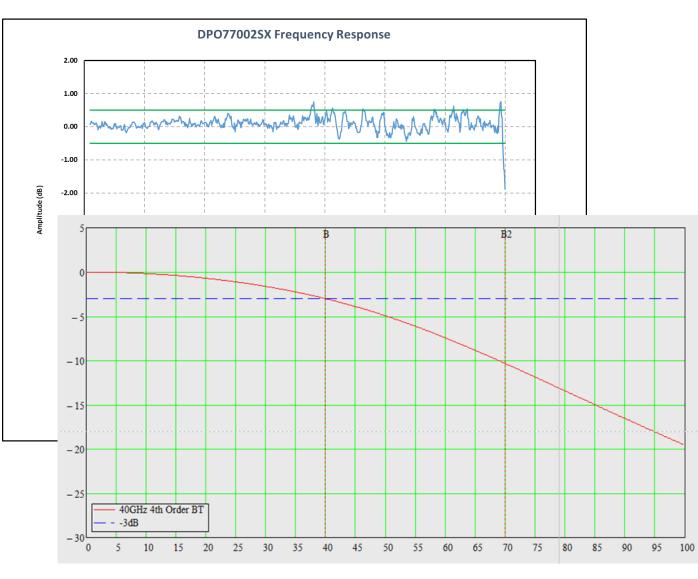

Equivalent Time

- 85GHz Optical Bandwidth
- 70GHz Electrical Bandwidth
- <100fs jitter noise floor
- 20nW to .6uW Optical Resolution.
- Automated test of 80 Industrial Stds.
- Best Optical solution on the planet

Scalable Performance

- Compact instrument for increased configuration flexibility
- UltraSync high performance synchronization for multi-unit configurations

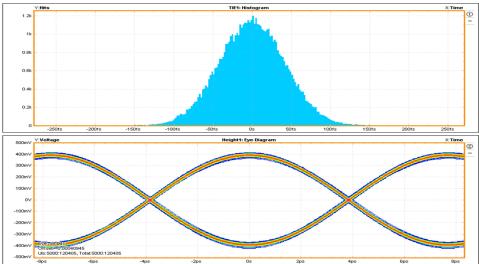
TEKTRONIX 400G PAM4 TECHNOLOGY UPDATE


High speed data path 2X 70GHz channels 4X 33GHz channels

Tektronix DPO77002SX Frequency Response

Flat intermodulation overlap zone offers the cleanest, low noise acquisition system available today.

Bandwidth to 70GHz can be channel modeled in DSP to map precisely to the 40G Bessel Thompson response required by OIF-CEI physical layer measurements today.



Tektronix 100G/400G Signal Acquisition Systems Equivalent Time Signal Acquisition • Real Time Signal Acquisition Software Control and Analysis

Real Time

- Multi channel time synchronized ۲ operation.
- Advanced analysis CTLE/DFE and • Complex Math.
- Complex modulation analysis tools.
- Unprecedented jitter noise floor. ۲
 - ~ 40fs RMS clock jitter 64 GHz clock) Ο
 - <125fs jitter noise floor (64Gbps PRBS) 0

Measurement Results

Summary View Hide Current Aquisitions

Description	Mean	Std Dev	Max	Min
TIE1, Math4	4.4985as	41.903fs	159.37fs	-167.66fs
Current Acquisition	4.4985as	41.903fs	159.37fs	-167.66fs
Height1, Math4	729.78mV	V0000.0	729.78mV	729.78mV
Current Acquisition	729.78mV	V0000.0	729.78mV	729.78mV
TJ@BER1, Math4	573.74fs	0.0000s	573.74fs	573.74fs
Current Acquisition	573.74fs	0.0000s	573.74fs	573.74fs
RJ-δδ1, Math4	38.441fs	0.0000s	38.441fs	38.441fs
Current Acquisition	38.441fs	0.0000s	38.441fs	38.441fs
DJ-δδ1, Math4	35.570fs	0.0000s	35.570fs	35.570fs
Current Acquisition	35.570fs	0.0000s	35.570fs	35.570fs
Width@BER1, Math4	14.811ps	0.0000s	14.811ps	14.811ps
Current Acquisition	14.811ps	0.0000s	14.811ps	14.811ps
PJ1, Math4	80.938fs	0.0000s	80.938fs	80.938fs
Current Acquisition	80.938fs	0.0000s	80.938fs	80.938fs
DJ1, Math4	83.367fs	0.0000s	83.367fs	83.367fs
Current Acquisition	83.367fs	0.0000s	83.367fs	83.367fs
RJ1, Math4	38.441fs	0.0000s	38.441fs	38.441fs
Current Acquisition	38.441fs	0.0000s	38.441fs	38.441fs
DDJ1, Math4	0.0000s	0.0000s	0.0000s	0.0000s
Current Acquisition	0.0000s	0.0000s	0.0000s	0.0000s

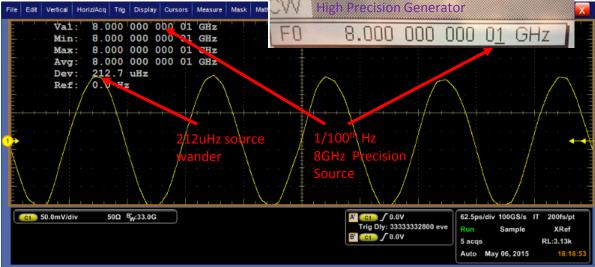
Source Reference Levels

Source	Autoset Method	Rise High	Rise Mid	Rise Low
Ch1	Auto	70.16mV	400uV	-69.36mV
Ch2	Auto	-44.04mV	-114.6mV	-185.16mV
Ch3	Auto	1V	0V	-1V
Ch4	Auto	1V	0V	-1V
Math1	Auto	1V	0V	-1V
Math2	Auto	-80.697mV	-302mV	-523.31mV
Math3	Auto	209.4mV	982.61uV	-207.43mV
Math4	Auto(Low-High(full wfm))	308.9mV	-409.45uV	-309.72mV
Ref1	Auto	1V	0V	-1V
Ref2	Auto	1V	0V	-1V
Ref3	Auto	1V	0V	-1V
Ref4	Auto	1V	0V	-1V

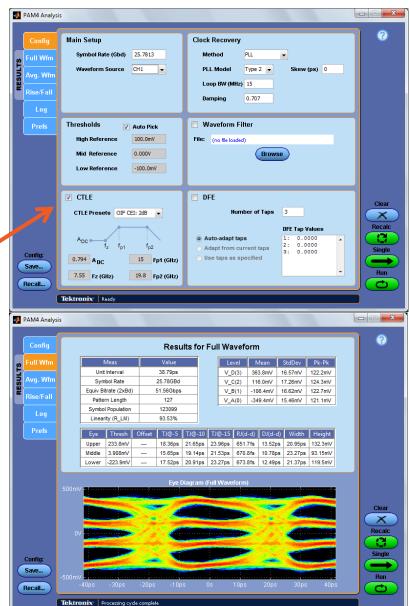
•	Miscel	laneous	Settings
			o o tango

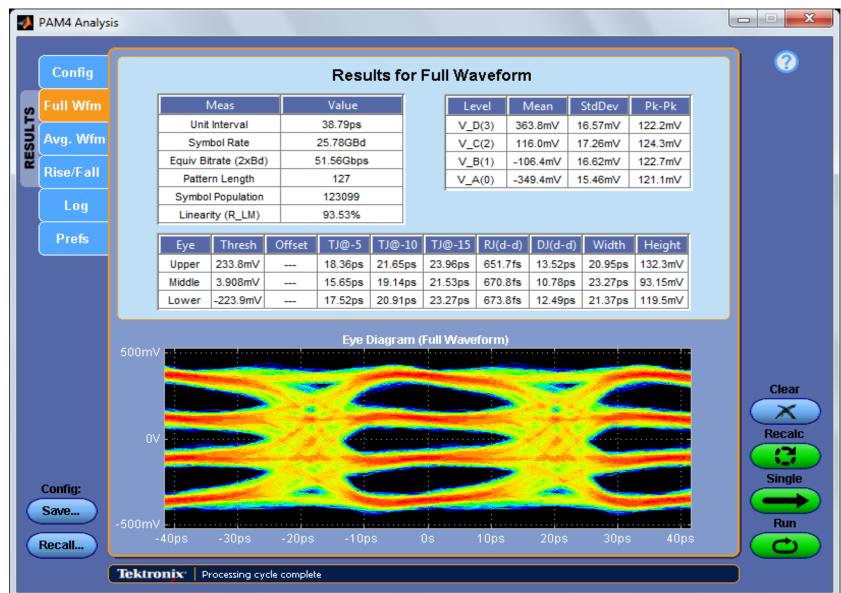
	Gating	Qualify	Population
State	Cursors	Off	Off
Source			
Size			

Pattern Length

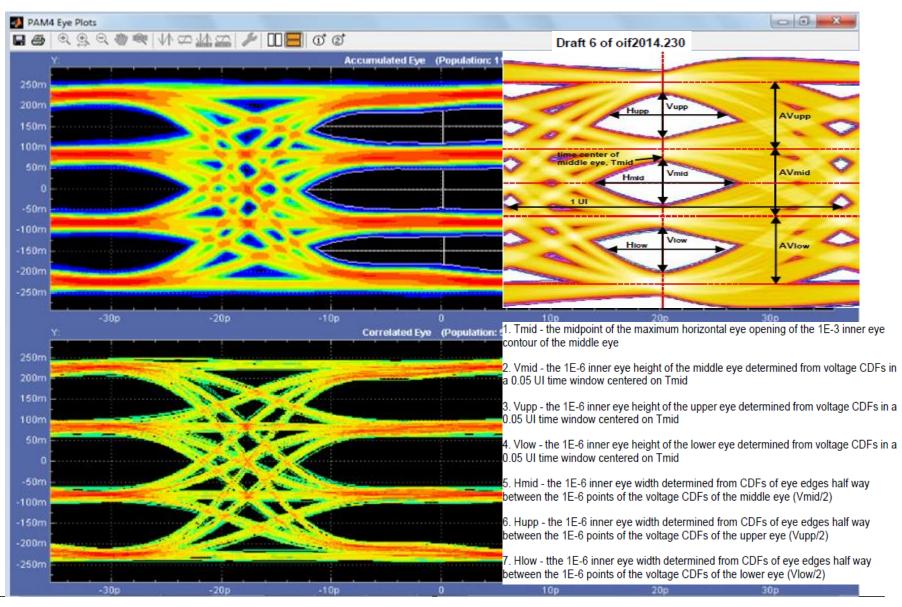

			Pattern Length
MATH4	130.00Gb/s	Repeating	2UI

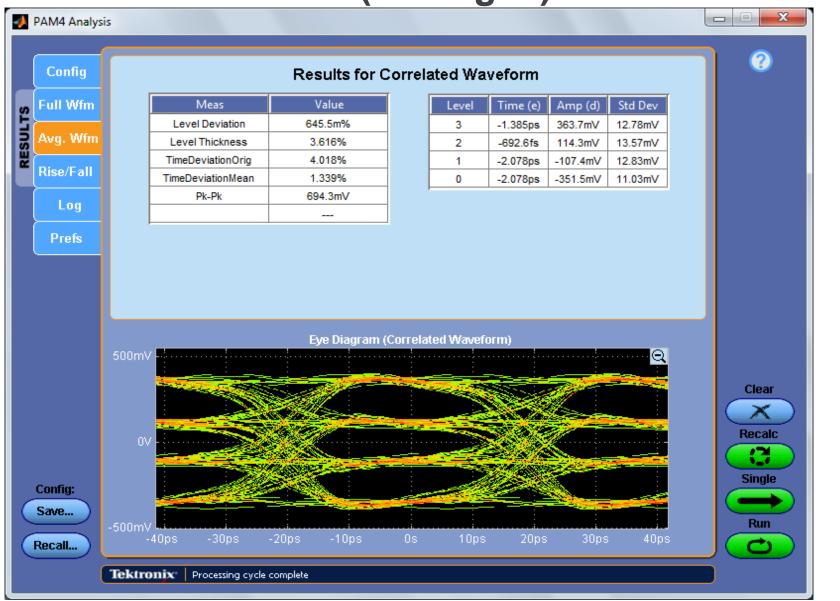
Tektronix 100G/400G Signal Acquisition Systems Equivalent Time Signal Acquisition • Real Time Signal Acquisition Software Control and Analysis

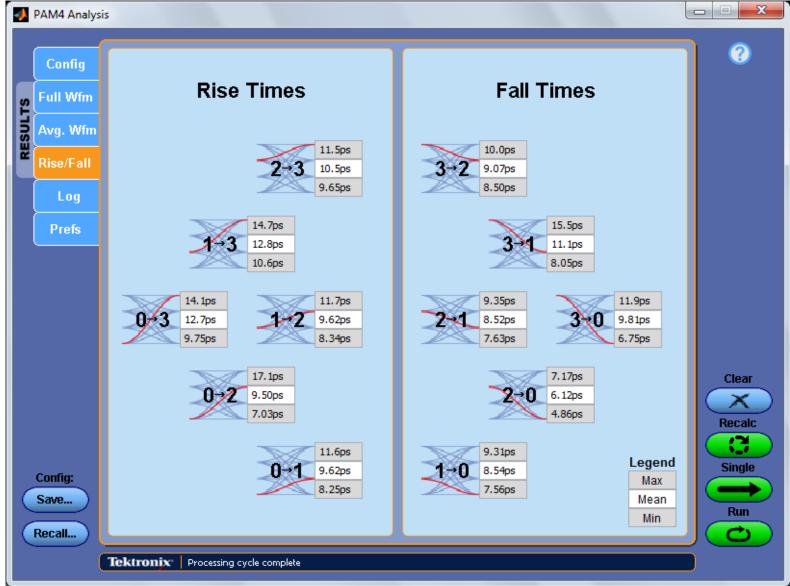

- New HW trigger performance level easily triggers on 100G tributary Runt
- New Internal 13-digit precision frequency counter (54bit) provides frequency analysis to 25GHz, with 200fs resolution
- Highly accurate clock stability measurements
- Accurate to < 1 part per billion

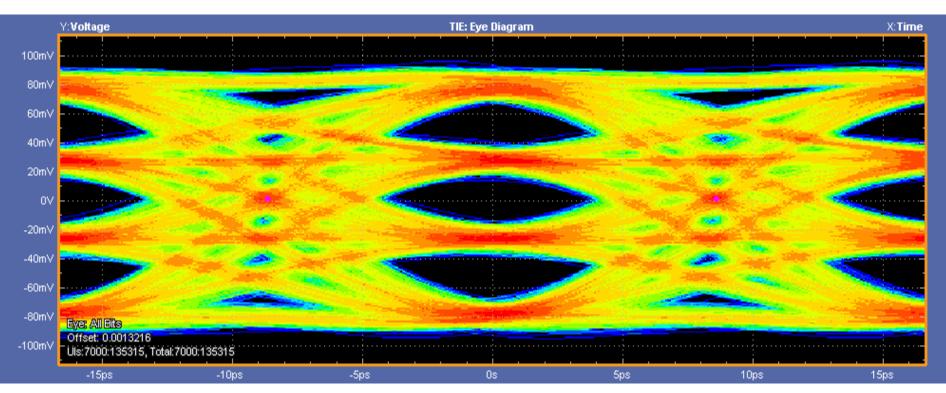


Real-Time PAM4


- PAM4 Analysis is a new application for real time oscilloscopes.
- It leverages DPOJET for eye diagrams and jitter decomposition.
- Full DSP based Clock Recovery and Signal Analysis up to 112Gbps/56GBaud signal rates.
- Configurability
 - PLL or Explicit clock recovery
 - Adjustable or automatic thresholds
 - Filter insertion (e.g. for de-embedding probes or cables)
 - CTLE (full custom or presets)
 - DFE
- Measurements
 - Full waveform
 - EH/EW at BER
 - Linearity
 - Jitter extrapolation at BER
 - Correlated (averaged) waveform
 - Rise / Fall per each transition type


Results for Full PAM4 Waveform


Eye Height at BER (Noise Decomp), Tmid, Vmid


Results for Correlated (Averaged) PAM4 Waveform

Results: PAM4 Rise Time / Fall Time Analysis

56GBaud PAM4 (112Gbit) Setup (400GBASE-DR4)


Measurement	Value	Eye	Thresh	Offset	TJ@-5	TJ@-10	TJ@-15	RJ(d-d)	DJ(d-d)	Width
Unit Interval	17.24ps	Upper	45.84mV	-1.907ps	14.10ps	16.64ps	18.37ps	466.1fs	10.86ps	2.726ps
Symbol Rate	58.00GBd	Middle	1.252mV	-2.050ps	12.62ps	14.82ps	16.30ps	388.9fs	10.02ps	4.098ps
Equiv Bitrate (2xBd)	116.0Gbps	Lower	-44.43mV	-2.350ps	14.19ps	16.57ps	18.17ps	427.3fs	11.28ps	3.253ps
Pattern Length	127	Lower	-44.431117	-2.550ps	14.13ps	10.57 ps	10.17ps	421.313	11.2005	3.233µ8
Symbol Population	135327									
Linearity (R LM)	97.70%									

Level	Mean	StdDev	Pk-Pk
V_D(3)	68.29mV	5.689mV	34.93mV
V_C(2)	24.16mV	5.789mV	37.65mV
V_B(1)	-22.37mV	5.952mV	38.39mV
V_A(0)	-67.23mV	5.913mV	39.95mV

400G Summary

- PAM4 (Higher order Modulation) technology is a major inflection point in the next increase of datarate to 400G. Measurement specs for PAM4 are in flux, and it's important to stay current on measurement techniques being formalized by the standards.
- Be mindful of the Bessel Thompson roll off behavior of the bandwidth specifications. These typically constrain channels out to their 10dB point (1.5X symbol rate) which can range from 50-70GHz electrically and up to 84GHz optically

- Solutions for 400G should address both 28GBaud and 56GBaud. Ideal solutions should be able to support both.
- Current technology (80C10C) offers separate option for near 100GHz Performance for technology research, as well as an option which supports all ORR filters from 25-56GBaud as a true analog HW filter.

