

2016太克科技 春季創新論壇

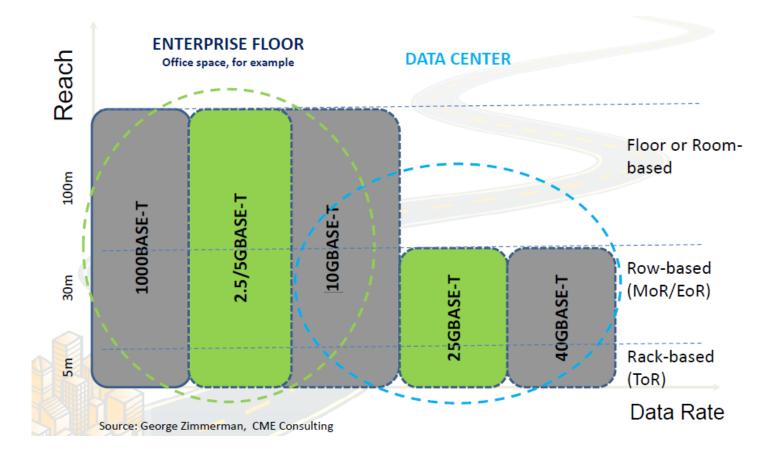
NBASE-T and IEEE802.3bz Technology and Transmitter Test Measurements

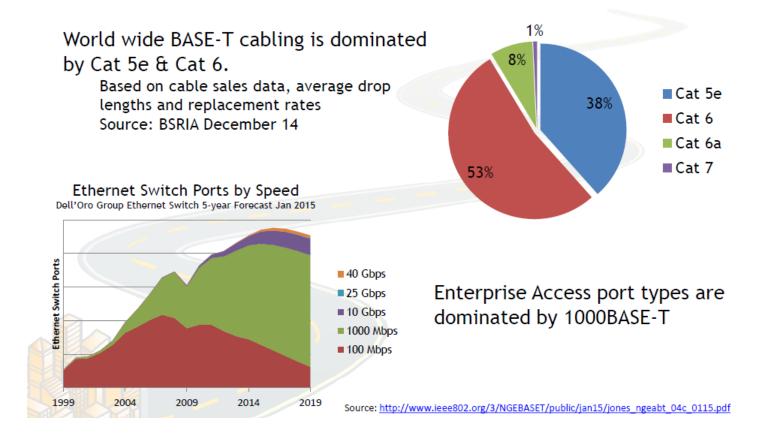
MIKE JULIANA

Agenda

- Market Trends
- 2.5G and 5G Specifications and Standards
- NBASE-T Technology
- Testing Challenges

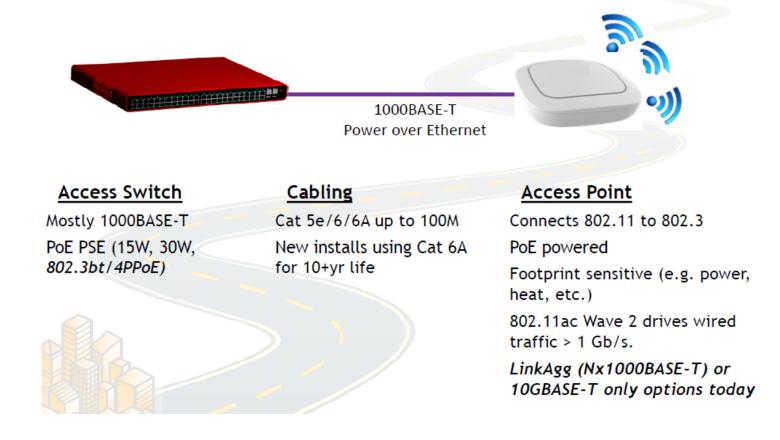
BASE-T Deployment


- Major Applications of BASE-T Endpoints
 - Desktops computers, servers,
 - IP Phones, Wireless Access Points
 - Consumer Electronics
- >4 Billion 100BASE-T & 1000BASE-T switch ports shipped in last 20 years.
 - Similar # for end points
 - BASE-T port total is approaching 1B/year
- BASE-T success attributes
 - Ease Of use and backward compatibility
 - Structured cabling
 - Incremental speed upgrades
 - · Multi-vendor interoperability
 - Supports Power Over Ethernet
 - Single-cable delivery of power and data to end devices
 - Optimal cost / performance

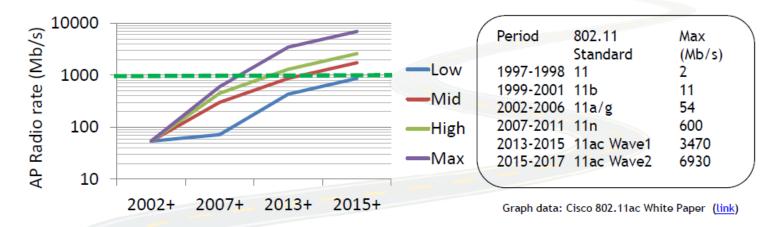

BASE-T Roadmap

The Application Spaces of BASE-T

Enterprise Access Links Today

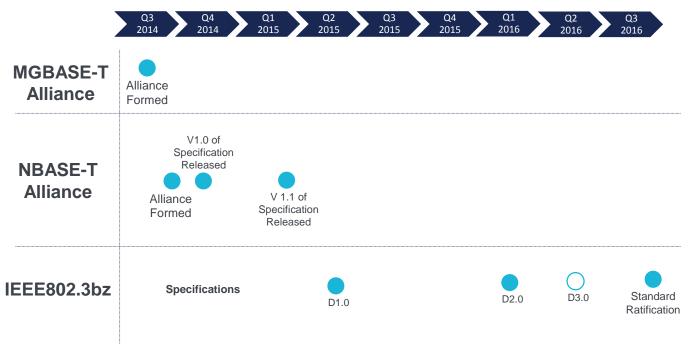


Cable Infrastructure


- From 2003 to 2014 ~70 billion meters of Cat 5e and Cat 6 cabling have been sold....
 - $^{\circ}$ ~90% of installed base
 - To the moon and back close to 100 times!
- Existing specifications support 1Gb/s over this cable
- Customers demanding more value from this infrastructure.

802.3 Ethernet and 802.11 Wireless LAN

Enterprise Access Point Radio Bandwidth

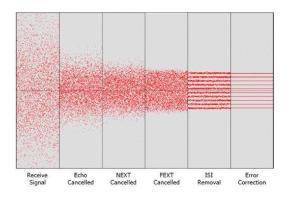

802.11 is clearly outgrowing 1000BASE-T

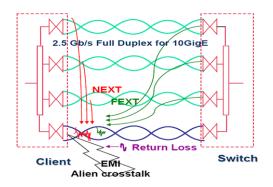
APs upgraded faster than switches, switches faster than cabling

802.11ax (High Efficiency WLAN) is coming, targets 4x throughput per station.

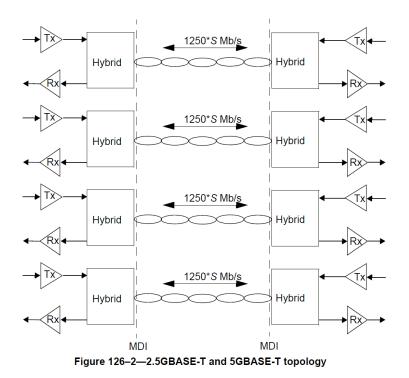
AP to switch bandwidth should be ~75% of radio bandwidth (to avoid Ethernet link as system bottleneck)

Getting to a 2.5G/5G Standard


"The technical baselines adopted by the 802.3bz Task Force are consistent with the NBASE-T specification and all NBASE-T products are expected to be compatible with the final standard, which is on track for ratification later this year, the group stated."


Network World; May 4, 2016

2.5G/5G BASE-T Technology

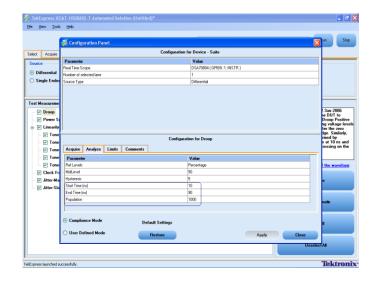

- NBASE-T PHY is similar to 10GBASE-T PHY specified in Clause 55 of IEEE 802.3-2012
 - The clock is scaled by 1/2 and 1/4 in order to accommodate 5Gbps and 2.5Gbps data rates, respectively
- 10GBASE-T technologies used to squeeze usable bandwidth out of installed cabling
- Advanced coding and signal processing allow 2.5G and 5G operation on Cat5e cabling
 - LDPC error correction capability rather than the simple CRC-8 error detection used by 10GBASE-T

2.5GBASE-T and 5GBASE-T PHY Overview

- Full duplex baseband transmission over four pairs of balanced twistedpair structured cabling
- 2.5 Gb/s or 5 Gb/s data rate achieved by transmitting one-quarter of the aggregate data rate in each direction simultaneously on each wire pair
- Baseband 16-level PAM signaling
 - Modulation rate of 200 Megasymbols per second for 2.5GBASE-T
 - 400 Megasymbols per second for 5GBASE-T is used on each of the wire pairs

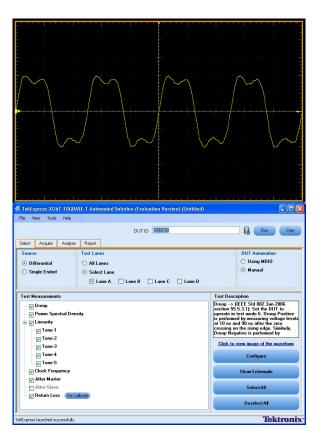
2.5G/5G Ethernet Transmitter Test Challenges

- Multiple Specifications/Standards
- Most devices need to be tested at multiple data rates(100M/1G/2.5G/5G/10G)
- Multiple measurements need to be performed including spectral measurements
- Test Fixture needed for repeatable and reliable measurements


2.5G/5G Technology Transmitter Measurements

Measurement	Purpose	10GBASE-T Standard Reference	IEEE802.3bz Reference
Maximum Output Droop	To verify that the transmitter output level does not droop more than the maximum specified amount.	IEEE 802.3-2012 Subclause 55.5.3.1	IEEE803.bz Subclause 126.5.3.1
Transmit Linearity	Verify that the output of the transmitter conforms to the transmitter linearity limits.	IEEE 802.3-2012 Subclause 55.5.3.2	IEEE803.bz Subclause 126.5.3.2
Transmit Timing Jitter – MASTER	Verify that the transmitter timing jitter of the PMA is within the conformance limits.	IEEE 802.3-2012 Subclause 55.5.3.3	IEEE803.bz Subclause 126.5.3.3
Transmit Timing Jitter – SLAVE	Verify that the transmitter timing jitter of the PMA is within the conformance limits.	IEEE 802.3-2012 Subclause 55.5.3.3	IEEE803.bz Subclause 126.5.3.3
Transmit Power Spectral Density (PSD) and Power Level	Verify the transmitter power level and power spectral density are within the conformance limits	IEEE 802.3-2012 Subclause 55.5.3.14	IEEE803.bz Subclause 126.5.3.4
Transmit Clock Frequency	Verify the frequency of the Transmit Clock is within the conformance limits.	IEEE 802.3-2012 Subclause 55.5.3.5	IEEE803.bz Subclause 126.5.3.5
MDI Return Loss	Measure the return loss at the MDI for all four channels to ensure it is within conformance limits	IEEE 802.3-2012 Subclause 55.8.2.1	IEEE803.bz Subclause 126.8.2.1

- Test Algorithms for 10GBASE-T, NBASE-T and IEEE802.bz are mostly common
 - IEEE802.3bz linearity measurement for 2.5GBASE-T now requires sine wave to be injected

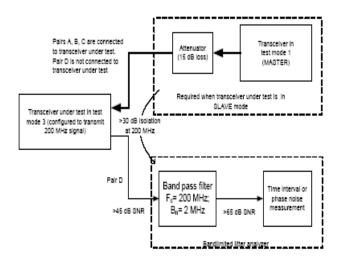

Maximum Output Droop

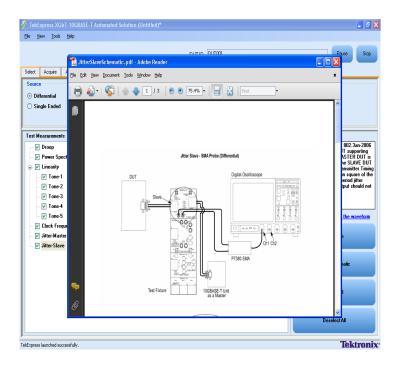
- **Purpose** To verify that the transmitter output level does not droop more than the maximum specified amount.
- Configure the DUT for Test Mode 6 operation

Transmitter Clock Frequency

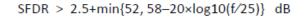
- Purpose To verify the frequency of the Transmit Clock is within the conformance limits.
- Configure the DUT for Test Mode 2 operation
- Exact PPM value for measured clock frequency is shown

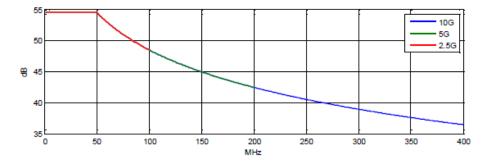
Transmitter Timing Jitter – Master


- Purpose To verify that the transmitter timing jitter of the PMA is within the conformance limits.
- Configure the DUT for Test Mode 2 operation
- An appropriate software filter is applied to the input waveform.

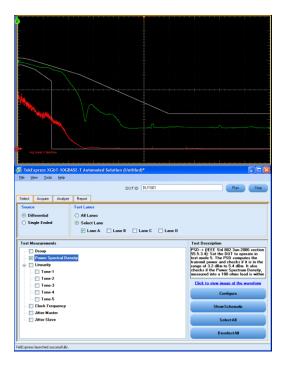


Transmitter Timing Jitter – Slave


- Purpose To verify that the transmitter timing jitter of the PMA is within the conformance limits.
- Configure the Master PHY for Test Mode 1 and Slave PHY for Test Mode 3 operation
- An appropriate software filter is applied to the input waveform.

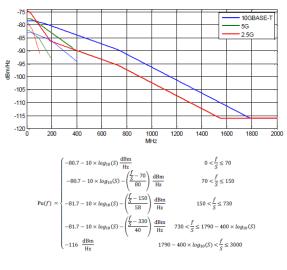


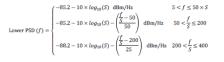
Transmitter Linearity


- **Purpose** : To verify that the output of the transmitter conforms to the transmitter linearity limits.
- Measured on all four lanes: A, B, C & D
- While in Test Mode 4, the SFDR of the transmitter when subject to dual tone inputs producing output peakto-peak transmit amplitude shall meet the specification
- Frequency scaling is performed to keep the minimum SFDR as in 10GBASE-T but over the relevant frequency range.

Transmitter Power Spectral Density (PSD) and Power Level

- **Purpose** : To verify the transmitter power level and power spectral density are within the conformance limits.
- Measured on all four lanes: A, B, C & D




Media Dependent Interface (MDI) Return Loss

• For reliable signal transmission, the DUT must adhere to a return loss limit curve

Figure 5: NBASE-T Tx PSD

Upper PSD $(f) = Max(Pu(f), Upper PSD_{10GBASE -T}(f) - 6)$

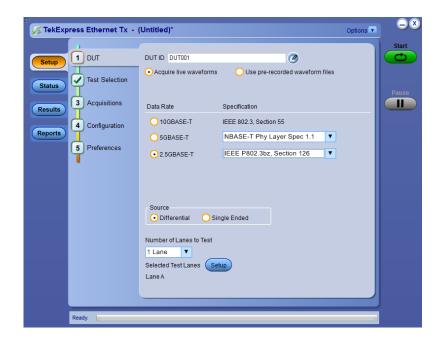
2.5G/5GBASE-T Recommended Equipment

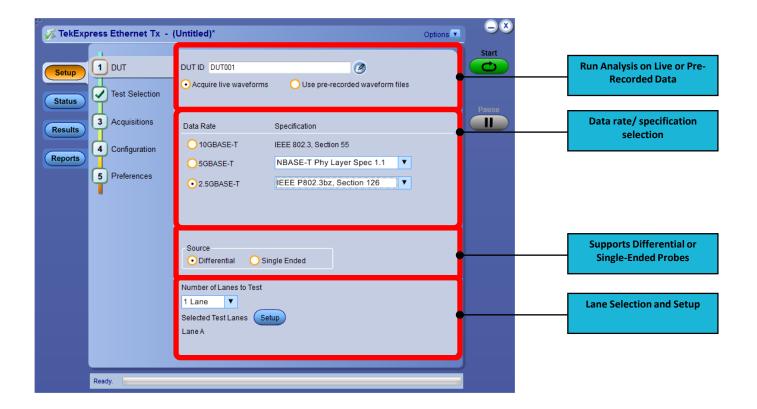
Test Equipment Requirements are similar to 10GBASE-T so most labs should consider the need for 10GBASE-T as well

- Real-Time Scope
 - 4 GHz recommended for 10GBASE-T (3.5 GHz is minimum)
 - $\circ~$ 2.5 GHz bandwidth recommended for 2.5G and 5G testing
- Test Fixture
 - Tektronix TF-XGbT supports differential and SMA probes
- Probes
 - Resistance > 10 K ohm and capacitance < 1 pF over the frequency range of (1 MHz to 400 MHz)×S
 - P6330 3.5GHz Differential Probe
- Automation Software
- Arbitrary Waveform Generator(For Return Loss Testing)

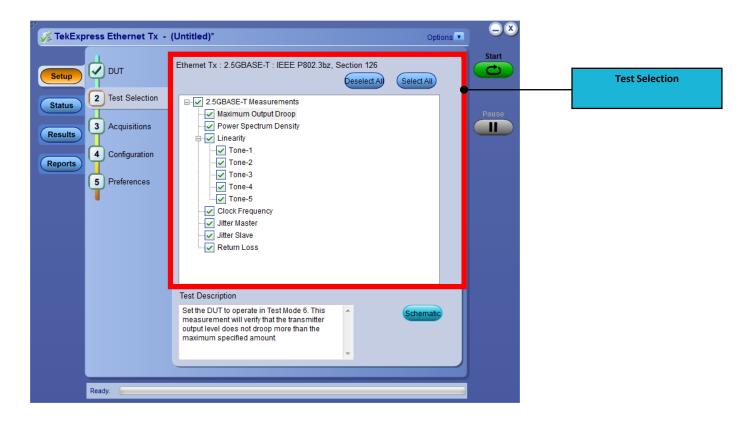
Provides easy access to the 10GBASE-T Electrical signals to perform conformance testing and device characterization

Fig 1: XGbT Test Fixture main board


Fig 2: Calibration Board


Figure 3: RJ45 Shielded Patch cord

Automation Software


- TekExpress Automation for Ethernet Tx Compliance
 - √ Single application supports: 2.5G,
 5G, and 10G data rates
 - √ Single application supports NBASE-T specification, IEEE802.3bz standard, and 10GBASE-T Standard
 - $\sqrt{}$ Tests multiple lanes
 - $\sqrt{}$ Automates scope setup
 - $\sqrt{}$ Acquires the data
 - $\sqrt{}$ Provides custom reporting

TekExpress for Ethernet Tx - Setup

TekExpress for Ethernet Tx – Test Selection

TekExpress for Ethernet Tx – Results Table

Overa	all Te:	Preferer	nces 💌				
Т	est N	lame	Pass/Fail	Value	Margin	Units	
۰E	Lan	e A	📀 Pass				\sim
		Maximum Output Droop	📀 Pass	0.9277174	L:0.9277 H:9.0723	%	
		High Limit	📀 Pass	10			
		Low Limit	📀 Pass	0			
		Maximum Output Droop	📀 Pass	1.0277930	L:1.0278 H:8.9722	%	
		High Limit	🥝 Pass	10			
		Low Limit	📀 Pass	0			
		Tone-1	📀 Pass	63.0336501	L:8.5337	dBm	
		High Limit	N.A	N.A			=
		Low Limit	🕑 Pass	54.5			
	÷	Tone-2	🕜 Pass	61.6429975	L:11.3430	dBm	
	Ξ	Tone-3	📀 Pass	61.8778672	L:16.4779	dBm	
		High Limit	N.A	N.A			
		Low Limit	🕑 Pass	45.4			
	Ξ	Tone-4	🕜 Pass	59.3263199	L:17.7263	dBm	
		High Limit	N.A	N.A			
		Low Limit	🕜 Pass	41.6			
	Ξ	Tone-5	Pass	57.1828344	L:18.6828	dBm	
		High Limit	N.A	N.A			
		a second	-	00 F			-

TekExpress for Ethernet Tx – Reports

Tektronix	TekExpress Ethernet Tx 10GBASE-T Test Report								
Setup Information									
DUT ID	DUT001	Scope Information	DSA73304D, Q100001						
Date/Time	2016-02-11 13:53:14	SPC, FactoryCalibration	PASS;PASS						
Device Type	Ethernet Tx	Scope F/W Version	7.1.3 Build 1						
TekExpress Ethernet Tx Ve	ersion 0.0.0.60	Probe1 Information	N.A, N.A						
TekExpress Framework Ve	rsion 4.0.4.224	Probe2 Information	N.A, N.A						
Execution Mode	Pre-Recorded	Probe3 Information	N.A, N.A						
Probing Type	Single-Ended	Probe4 Information	N.A, N.A						
Compliance Mode	True		÷						
Overall Test Result	Pass								
Overall Execution Time	0:01:14								
DUT COMMENT: Ge	neral comment								

Maximum Output Droop									
Measurement Details	Lane	Iteration	Measured Value	Test Result	Margin	Low Limit	High Limit	Units	Comments
Droop Positive	Lane A	1	0.9277174	Pass	L:0.9277 H:9.0723	0	10	%	Max: 1.6476 Min: 0.1241
Droop Negative	Lane A	1	1.0277930	Pass	L:1.0278 H:8.9722	0	10	%	Max: 1.6545 Min: 0.2289
COMMENTS		Droop Pulse C	ount: 500Droop	Pulse Count: 50	0				

Back to Summary Tabl

Tone-1									
Measurement Details	Lane	Iteration	Measured Value	Test Result	Margin	Low Limit	High Limit	Units	Comments
Linearity Tone-1	Lane A	1	63.0336501	Pass	L:8.5337	54.5	N.A	dBm	IMD: 0.21% TF1: 36.72 MHz TF2: 41.41 MHz IMF: 17.97 MHz
COMMENTS									

Back to Summary Tabl

Tone-2									
Measurement Details	Lane	Iteration	Measured Value	Test Result	Margin	Low Limit	High Limit	Units	Comments
Linearity Tone-2	Lane A	1	61.6429975	Pass	L:11.3430	50.3	N.A	dBm	IMD: 0.23% TF1: 78.90 MHz TF2: 80.47 MHz IMF: 238.28 MHz
COMMENTS									

Summary

- · Increases in wireless bandwidth outpacing current wired capability
- Massive installed-based of Cat 5e and Cat 6 cable is expensive to upgrade so jump to 10GBASE-T is not cost-effective
- IEEE currently working on 2.5GBASE-T and 5GBASE-T standards (IEEE802.3bz)
- Similar testing challenges as for 10GBASE-T
- Automation of testing is key to productivity
- Testing needs to support multiple speeds

- Tektronix Ethernet Solutions: http://www.tek.com/ethernet-test
- TekExpress Ethernet Tx Datasheet: <u>http://www.tek.com/datasheet/tekexpress-10gbase-t-and-nbase-t-datasheet</u>
- NBASE-T Alliance Website: http://www.nbaset.org/
- Fundamentals of NBASE-T Video: <u>http://www.nbaset.org/fundamentals-of-nbase-t/</u>

